Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
RSC Adv ; 14(10): 6470-6475, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38390499

RESUMO

In this work, an eco-friendly, green, efficient approach for oxidative and reductive Heck-Mizoroki (HM) reactions was developed, which offered acceptable yields from first-pass experiments. Mono-arylation was achieved without the use of ligands, directing groups, or prefunctionalized alkenes. Considering mild reaction conditions, good functional group compatibility, and great regioselectivity, the method can find broad applications in novel medicine and material development and discovery processes.

3.
Food Chem X ; 21: 101056, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187946

RESUMO

Self-constructed water-in-oil emulsions can be stabilized by a natural pentacyclic triterpenoid, betulin. A higher betulin concentration (3%) results in smaller emulsion droplet sizes. Microscopy, confocal laser scanning microscopy and rheology indicate that the stabilizing mechanism is attributed to betulin crystals on the emulsion interface and within the continuous phase, thereby enabling excellent freeze/thaw and thermal stability. The betulin Pickering emulsion (1%) significantly increased betulin bioaccessibility (22.4%) compared to betulin alone (0.2%) and betulin-oil physical mixture (7.9%). A higher level of betulin at 3% leads to smaller emulsion particle size, potentially resulting in a greater surface area. This, in return, promotes a higher release of free fatty acids (FFA), contributing to the release and solubilization of betulin from emulsions. Additionally, it leads to the formation of micelles, further increasing betulin bioaccessibility (29.3%). This study demonstrates Pickering emulsions solely stabilized by phytochemical betulin provides an innovative way to improve its bioaccessibility.

4.
Biomed Hub ; 8(1): 97-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094192

RESUMO

Background: Menopause in women marks the knot of reproductive life, and menopause is defined as the last menstrual period in a woman, but this is caused by the failure of the ovarian reserve. The average age of natural menopause in the general population of women has remained around 50-52 years. Premature ovarian insufficiency (POI) is a debilitating clinical syndrome that manifests as a decline in ovarian function in women under 40. This condition is a prominent cause of female infertility. Summary: POI is a debilitating condition that not only wreaks havoc on patients' physical and mental well-being but also imposes substantial mental, psychological, and economic burdens, particularly on women. In addition to diminished fertility, individuals afflicted with POI face an elevated risk of developing debilitating conditions such as osteoporosis and cardiovascular disease. The etiologies of POI are highly heterogeneous, and it can be caused by spontaneous genetic defects or induced by autoimmune diseases, infections, and iatrogenic or environmental factors. Alarmingly, idiopathic POI, a subtype characterized by an unknown etiology, accounts for more than half of all POI cases. Currently, clinical interventions for POI primarily consist of hormone replacement therapy. Fertility preservation methods are cryopreservation of embryos, oocytes, and ovarian tissue. Immunological interventions, gene editing techniques, and stem cell-based therapies are being explored to unravel the diverse etiologies and underlying mechanisms of POI, thereby enabling the identification of optimal therapeutic interventions. These innovative approaches offer unprecedented opportunities to advance the field of reproductive medicine. Key Messages: The main aim of this paper was to offer a succinct summary of the latest research breakthroughs concerning the elucidation of the mechanisms governing the origin and management of POI.

5.
Front Microbiol ; 14: 1211915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033567

RESUMO

Turpan Basin located in the eastern Xinjiang is a typical arid inland basin with extremely scarce water resources and a fragile ecosystem. Prokaryotic communities with unique genetic and physiological modifications can survive and function in such harsh environments, offering diverse microbial resources. However, numerous microbes can enter the viable but non-culturable state because of drought stress in the desert soil. In this work, next generation sequencing (NGS) technology based on DNA nanoball sequencing platform (DNBSEQ-G400) and sequencing-by-synthesis platform (NovaSeq 6000) were applied to analyze the prokaryotic diversity in three hyper-arid Gobi soils from Flaming Mountain, Toksun, and Kumtag. The comparison between two platforms indicated that DNBSEQ-G400 had better repeatability and could better reflect the prokaryotic community of this hyper-arid region. The diversity analysis based on DNBSEQ-G400 identified a total of 36 bacterial phyla, including Pseudomonadota, Bacteroidota, Bacillota, Actinomycetota, Methanobacteriota, Acidobacteriota, Nitrososphaerota, and Planctomycetota. The environmental factors, including soluble salt, available potassium, total nitrogen, and organic matter, were positively correlated with the abundance of most prokaryote. In addition, the prokaryotic community assembly in hyper-arid soil was well described by neutral-based models, indicating that the community assembly was mainly controlled by stochastic processes. Finally, the phylogenetic analysis of Actinomycetota proved that such extremophiles played an important role in the ecosystems they colonize. Overall, our result provides a reference for choosing the appropriate sequencing platform and a perspective for the utilization of soil microbial resources from hyper-arid regions.

6.
J Thorac Dis ; 15(10): 5574-5584, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969314

RESUMO

Background: The incidence of pulmonary complications following lung cancer surgery has declined recently; however, postoperative acute lung injury (PALI) is still common. The present study aimed to assess the prognosis of PALI after lung cancer surgery on different injury sides, describe its clinical characteristics and identify risk factors. Methods: This was a monocenter retrospective study conducted in a university surgical intensive care unit (SICU). Patients requiring respiratory support with severe hypoxemia after lung cancer surgery were included. Patients were categorized based on the radiographic assessment of lung edema (RALE) score ratio, which calculates the severity of surgical/nonsurgical side of lung injury [RRALE; RALE score of the surgical side (RALES) divided by RALE score of nonsurgical side (RALENS)], into two groups: the nonsurgical-side lung injury group (RRALE <1) and others (RRALE ≥1). The primary outcome was 90-day mortality, and secondary outcomes included in-hospital 28-day mortality, total intensive care unit (ICU) length of stay (LOS), hospital LOS and 6-month survival. Results: Sixteen patients were enrolled in this study. Nine patients were included in the RRALE <1 group and seven patients were included in the RRALE ≥1 group. At 90 days, six patients in the RRALE <1 group had died, whereas none died in the RRALE ≥1 group (P=0.01). No significant difference was observed in in-hospital 28-day all-cause mortality (P=0.48) or ICU or hospital LOS (P=0.34 and P=0.36, respectively) between the two groups. Survival at 6 months was significantly lower in the RRALE <1 group (33.33%) than in the RRALE ≥1 group (100.00%) (P=0.009). Conclusions: Patients with severe lung injury on the nonsurgical side after lung cancer surgery had high 90-day mortality rates. Large prospective studies and accurate monitoring data are needed in the future to identify the risk factors and therapy for such lung injury.

7.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687797

RESUMO

Since the release of the contrastive language-image pre-training (CLIP) model designed by the OpenAI team, it has been applied in several fields owing to its high accuracy. Sleep staging is an important method of diagnosing sleep disorders, and the completion of sleep staging tasks with high accuracy has always remained the main goal of sleep staging algorithm designers. This study is aimed at designing a multimodal model based on the CLIP model that is more suitable for sleep staging tasks using sleep signals and labels. The pre-training efforts of the model involve five different training sets. Finally, the proposed method is tested on two training sets (EDF-39 and EDF-153), with accuracies of 87.3 and 85.4%, respectively.


Assuntos
Transtornos do Sono-Vigília , Sono , Humanos , Fases do Sono , Algoritmos
8.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2818-2838, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584134

RESUMO

Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical 'seahorse' shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41 ℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.


Assuntos
Fenilalanina Amônia-Liase , Podofilotoxina , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Clonagem Molecular
10.
J Colloid Interface Sci ; 650(Pt A): 211-221, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402327

RESUMO

Pathogenic biofilm induced oral diseases have posed a significant treat to human health, such as periodontitis resulting from the formation of bacterial biofilm on teeth and gums. The traditional treatment methods such as mechanical debridement and antibiotic therapy encounter the poor therapeutic effect. Recently, numerous nanozymes with excellent antibacterial effect have been widely used in the treatment of oral diseases. In this study, a novel iron-based nanozyme (FeSN) generated by histidine-doped FeS2 with high peroxidase-like (POD-like) activity was designed for the oral biofilm removal and treatment of periodontitis. FeSN exhibited an extremely high POD-like activity, and enzymatic reaction kinetics and theoretical calculations had demonstrated its catalytic efficiency to be approximately 30 times than that of FeS2. The antibacterial experiments showed that FeSN had robust antibacterial activity against Fusobacterium nucleatum in the presence of H2O2, causing a reduction in the levels of glutathione reductase and ATP in bacterial cells, while increasing the level of oxidase coenzyme. The ultrahigh POD-like activity of FeSN allowed for easy detection of pathogenic biofilms and promoted the breakdown of biofilm structure. Furthermore, FeSN demonstrated excellent biocompatibility and low cytotoxicity to human fibroblast cells. In a rat model of periodontitis, FeSN exhibited significant therapeutic effects by reducing the extent of biofilm formation, inflammation, and alveolar bone loss. Taken together, our results suggested that FeSN, generated by self-assembly of two amino acids, represented a promising approach for biofilm removal and periodontitis treatment. This method has the potential to overcome the limitations of current treatments and provide an effective alternative for periodontitis treatment.


Assuntos
Histidina , Periodontite , Ratos , Animais , Humanos , Peroxidase , Peróxido de Hidrogênio/farmacologia , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Biofilmes , Antibacterianos/química , Corantes/farmacologia
11.
Gels ; 9(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504444

RESUMO

The properties of blueberry juice and whey protein gels formed by the mixed fermentation of L. plantarum 67 and L. paracasei W125 were investigated. The state of the gels, including the colour and surface morphology of the microspheres, showed significant changes with different fermentation times. The polyphenolic, flavonoid, and protein release of whey protein or combined blueberry juice fermented gels under in vitro digestion were investigated. The whey protein and blueberry juice fermented gels had more small pores, with a honeycomb structure, compared to whey protein fermented gels. The hardness of the gels was increased after fermentation for 7 h for the whey protein gels and whey protein mixture blueberry juice gels. The storage modulus and water-holding capacity of the gels were increased between fermentation times of 6 h and 8 h. The swelling rates of the whey protein gels fermented for 7 h and whey protein mixed blueberry juice gels fermented for 8 h and kept in pepsin-free simulated gastric fluid for 1 h had higher values. The release of polyphenols, flavonoids, and protein for the fermented gels was higher at fermentation of 7 h in the in vitro digestion experiment. We found that the chewiness of the whey protein gels, or whey protein mixed fermentation gels, was higher at a fermentation time of 7.5 h and 8 h. However, the cohesiveness values were not significantly different. Therefore, whey protein fermented gels and whey protein mixed blueberry juice fermented gels should be fermented for more than 7 h. This facilitates the release of polyphenols, flavonoids, and protein in the gastric juices.

13.
Bioorg Chem ; 138: 106619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37253310

RESUMO

Three new diterpenoids with an unusual carbon skeleton, pedilanins A-C (1-3), and nine new jatrophane diterpenoids, pedilanins D-L (4-12), along with five known ones (13-17), were isolated from Pedilanthus tithymaloides. Compounds 1-3 characterize an unprecedented tricyclo[10.3.0.02,9]pentadecane skeleton. Compounds 4-8 are rare examples of the jatrophanes bearing a cyclic hemiketal substructure. Their structures were determined by an extensive analysis of HRESIMS, NMR, quantum-chemical calculation, DP4+ probability, and X-ray crystallographic data. In the bioassay, compounds 1-12 dramatically reversed multidrug resistance in cancer cells with the fold-reversals ranging from 17.9 to 396.8 at the noncytotoxic concentration of 10 µM. The mechanism results indicated that compounds 2 and 3 inhibited the P-glycoprotein (Pgp) transporter function, thus reversing the drug resistance.


Assuntos
Diterpenos , Euphorbia , Estrutura Molecular , Euphorbia/química , Resistência a Múltiplos Medicamentos , Compostos Radiofarmacêuticos/farmacologia , Diterpenos/farmacologia , Diterpenos/química
14.
Evol Appl ; 16(4): 814-823, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124085

RESUMO

The ecological effects of mass-flowering crops on pollinator abundance and species richness of neighbouring habitats are well established, yet the potential evolutionary consequences remain unclear. We studied effects of proximity to a mass-flowering crop on the pollination of local co-flowering plants and on patterns of natural selection on a pollination-generalised plant on the Tibetan Plateau. We recorded pollinator visitation rates and community composition at different distances (near vs. far) to oilseed rape (Brassica napus) fields in two habitat types and quantified pollinator-mediated selection on attractive traits of Trollius ranunculoides. The proximity to oilseed rape increased pollinator visitation in neighbouring alpine meadows and changed pollinator composition in neighbouring shrub meadows. Trollius ranunculoides in the alpine meadow near oilseed rape received three times more pollinator visits (mainly bees) and consequently had a 16.5% increase in seed set but also received slightly more heterospecific pollen per stigma. In contrast, pollinator visitation to T. ranunculoides in the shrub meadow near oilseed rape was three times lower (mainly flies), leading to a 10.7% lower seed despite no effect on pollen deposition. The proximity to the oilseed rape field intensified pollinator-mediated selection on flower size and weakened selection on flower height of T. ranunculoides in the alpine meadow but did not affect phenotypic selection on either trait in the shrub meadow. Our study highlights context-dependent variation in plant-pollinator interactions close to mass-flowering oilseed rape, suggesting potential effects on the evolution of flower traits of native plants through altered pollinator-mediated selection. However, context dependence may make these effects difficult to predict.

15.
Int J Surg ; 109(5): 1105-1114, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039533

RESUMO

BACKGROUND: The rate of bile duct injury in laparoscopic cholecystectomy (LC) continues to be high due to low critical view of safety (CVS) achievement and the absence of an effective quality control system. The development of an intelligent system enables the automatic quality control of LC surgery and, eventually, the mitigation of bile duct injury. This study aims to develop an intelligent surgical quality control system for LC and using the system to evaluate LC videos and investigate factors associated with CVS achievement. MATERIALS AND METHODS: SurgSmart, an intelligent system capable of recognizing surgical phases, disease severity, critical division action, and CVS automatically, was developed using training datasets. SurgSmart was also applied in another multicenter dataset to validate its application and investigate factors associated with CVS achievement. RESULTS: SurgSmart performed well in all models, with the critical division action model achieving the highest overall accuracy (98.49%), followed by the disease severity model (95.45%) and surgical phases model (88.61%). CVSI, CVSII, and CVSIII had an accuracy of 80.64, 97.62, and 78.87%, respectively. CVS was achieved in 4.33% in the system application dataset. In addition, the analysis indicated that surgeons at a higher hospital level had a higher CVS achievement rate. However, there was still considerable variation in CVS achievement among surgeons in the same hospital. CONCLUSIONS: SurgSmart, the surgical quality control system, performed admirably in our study. In addition, the system's initial application demonstrated its broad potential for use in surgical quality control.


Assuntos
Doenças dos Ductos Biliares , Colecistectomia Laparoscópica , Cirurgiões , Humanos , Colecistectomia Laparoscópica/educação , Padrões de Prática Médica
16.
Front Plant Sci ; 14: 1134308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909446

RESUMO

Early-matured aromatic japonica rice from the Northeast is the most popular rice commodity in the Chinese market. The Qigeng10 (QG10) was one of the varieties with the largest planting area in this region in recent years. It was an early-matured japonica rice variety with a lot of superior traits such as semi-dwarf, lodging resistance, long grain, aromatic and good quality. Therefore, a high-quality assembly of Qigeng10 genome is critical and useful for japonica research and breeding. In this study, we produced a high-precision QG10 chromosome-level genome by using a combination of Nanopore and Hi-C platforms. Finally, we assembled the QG10 genome into 77 contigs with an N50 length of 11.80 Mb in 27 scaffolds with an N50 length of 30.55 Mb. The assembled genome size was 378.31Mb with 65 contigs and constituted approximately 99.59% of the 12 chromosomes. We identified a total of 1,080,819 SNPs and 682,392 InDels between QG10 and Nipponbare. We also annotated 57,599 genes by the Ab initio method, homology-based technique, and RNA-seq. Based on the assembled genome sequence, we detected the sequence variation in a total of 63 cloned genes involved in grain yield, grain size, disease tolerance, lodging resistance, fragrance, and many other important traits. Finally, we identified five elite alleles (qTGW2Nipponbare , qTGW3Nanyangzhan , GW5IR24 , GW6Suyunuo , and qGW8Basmati385 ) controlling long grain size, four elite alleles (COLD1Nipponbare , bZIP73Nipponbare , CTB4aKunmingxiaobaigu , and CTB2Kunmingxiaobaigu ) controlling cold tolerance, three non-functional alleles (DTH7Kitaake , Ghd7Hejiang19 , and Hd1Longgeng31 ) for early heading, two resistant alleles (PiaAkihikari and Pid4Digu ) for rice blast, a resistant allele STV11Kasalath for rice stripe virus, an NRT1.1BIR24 allele for higher nitrate absorption activity, an elite allele SCM3Chugoku117 for stronger culms, and the typical aromatic gene badh2-E2 for fragrance in QG10. These results not only help us to better elucidate the genetic mechanisms underlying excellent agronomic traits in QG10 but also have wide-ranging implications for genomics-assisted breeding in early-matured fragrant japonica rice.

17.
Comput Intell Neurosci ; 2023: 7535594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936670

RESUMO

The purpose is to study the soil's water-soluble organic matter and improve the utilization rate of the soil layer. This exploration is based on the theories of three-dimensional fluorescence spectroscopy, deep learning, and biochar. Chernozem in Harbin City, Heilongjiang Province, is taken as the research object. Three-dimensional fluorescence spectra and a deep learning model are used to analyze the content of water-soluble organic matter in the soil layer after continuous application of corn biochar for six years and to calculate different fluorescence indexes in the whole soil depth. Among them, the three-dimensional fluorescence spectrum theory provides the detection standard for the application effect detection of biochar, the deep learning theory provides the technical support for this exploration, and the biochar theory provides the specific research direction. The results show that the application of corn biochar for six consecutive years significantly reduces the average content of water-soluble organic matter in different soil layers. Among them, the highest average content of soil water-soluble organic matter is "nitrogen, potassium, phosphorous" (NPK) and the lowest is "boron, carbon" (BC). Comparing the soil with BC alone, in the topsoil, the second section (330-380 nm/200-250 nm) with BC + NPK increases by 13.3%, the third section (380-550 nm/220-250 nm) increases by 8.4%, and the fourth section (250-380 nm/250-600 nm) increases by 50.1%. The combination of nitrogen (N) + BC has a positive effect of 20.7%, 12.2%, and 28.4% on sections I, II, and IV, respectively. In addition, in the topsoil, the combination of NPK + BC significantly increases the content of acid-like substances compared with the application of BC alone. In the black soil, with or without fertilizer NPK, there is no significant difference in the level of fulvic acid-like components. The prediction of soil water-soluble organic matter after continuous application of corn biochar based on three-dimensional fluorescence spectra and deep learning is carried out, which has reference significance for the rapid identification and early prediction of subsequent soil activity.


Assuntos
Aprendizado Profundo , Solo , Solo/química , Zea mays , Água , Fluorescência , Carbono , Nitrogênio/análise
18.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838455

RESUMO

In this work, bacterial community composition and actinobacteria resources were explored in extremely hot and hyper-arid areas of Flaming Mountain. This was achieved through a combination of PCR amplicon sequencing of bacterial 16S rRNA gene and cultivation-dependent isolation and characterization efforts. According to the high-throughput sequencing results and soil characteristics, 11 kinds of media were firstly designed to isolate actinobacteria, following the screening and identification of related strains. The results showed that a total of 2994 operational taxonomic units (OTUs) were obtained, involving 22 phyla, 77 orders and 121 genera. Among them, actinobacteria with the relative abundance of 8% ranked third, accounting for 33 genera and 47 species. A total of 132 strains distributed by eight families and 11 genera of actinobacteria were isolated from 11 media, of which six strains were potential new species. Furthermore, the functional characteristics of isolated strains were preliminarily evaluated. The results showed that the obtained strains generally had tolerance against heat, salt and alkali. Fifty-two strains had antibacterial activity, 69 strains could produce hydrolases, and 12.4% of the strains had quorum sensing inhibitory activity. The present study has laid a solid foundation for further understanding the bacterial diversity and exploiting actinobacteria resources in the Flaming Mountain area.

19.
Plants (Basel) ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36840177

RESUMO

At present, extracting water-soluble organic matter (WSOM) from agricultural organic waste is primarily used to evaluate soil organic matter content in farmland. However, only a few studies have focused on its vertical behavior in the soil profile. This study aims to clarify the three-dimensional fluorescence spectrum characteristics of the WSOM samples in 0-60 cm black soil profile before and after different chemical fertilizer treatments after six years of fertilization. Fluorescence spectroscopy combined with fluorescence and ultraviolet-visible (UV-Vis) spectroscopies are used to divide four different fertilization types: no fertilization (T0), nitrogen phosphorus potassium (NPK) (T1), biochar (T2), biochar + NPK (T3), and biochar + N (T4) in a typical black soil area. The vertical characteristics of WSOC are also analyzed. The results showed that after six years of nitrogen application, T2 had a significant effect on the fluorescence intensity of Zone II (decreasing by 9.6% in the 0-20 cm soil layer) and Zone V (increasing by 8.5% in the 0-20 cm soil layer). The fluorescent components identified in each treatment group include ultraviolet radiation A humic acid-like substances (C1), ultraviolet radiation C humic acid-like substances (C2), and tryptophan-like substance (C3). As compared with the land with T1, the content of C2 in the 20-60 cm soil layer with T2 was lower, while that of C2 in the surface and subsoil with T3 was higher. In addiiton, there were no significant differences in the contents of C1, C2, and C3 by comparing the soils applied with T3 and T4, respectively. The composition of soil WSOM was found to be significantly influenced by the addition of a mixture of biochar and chemical fertilizers. The addition of biochar alone exerted a positive effect on the humification process in the surface soil (0-10 cm). NPK treatment could stimulate biological activity by increasing biological index values in deeper soil layers (40-50 cm). Nitrogen is the sovereign factor that improves the synergism effect of chemical fertilizer and biochar during the humification process. According to the UV-Vis spectrum and optical index, soil WSOM originates from land and microorganisms. This study reveals the dynamics of WSOC in the 0-60 cm soil layer and the biogeochemical effect of BC fertilizer treatment on the agricultural soil ecosystem.

20.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771024

RESUMO

Immobilizing enzymes with nanozymes to catalyze cascade reactions overcomes many of the shortcomings of biological enzymes in industrial manufacturing. In the study, glucose oxidases were covalently bound to FeS2 nanozymes as immobilization carriers while chitosan encapsulation increased the activity and stability of the immobilized enzymes. The immobilized enzymes exhibited a 10% greater increase in catalytic efficiency than the free enzymes while also being more stable and catalytically active in environments with an alkaline pH of 9.0 and a high temperature of 100 °C. Additionally, the FeS2 nanozyme-driven double-enzyme cascade reaction showed high glucose selectivity, even in the presence of lactose, dopamine, and uric acid, with a limit of detection (LOD) (S/N = 3) as low as 1.9 × 10-6 M. This research demonstrates that nanozymes may be employed as ideal carriers for biological enzymes and that the nanozymes can catalyze cascade reactions together with natural enzymes, offering new insights into interactions between natural and synthetic biosystems.


Assuntos
Quitosana , Enzimas Imobilizadas , Glucose Oxidase/metabolismo , Limite de Detecção , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA